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STRUCTURAL THEORY
FOR AXTALLY SYMMETRIC CIRCULAR CYLINDERS

by

Robert F. Melworm, Irwin Berman, Bernard W. Shaffer

Abstract

An elastic shell theory is formulated for axisymmetric circular cylin-
ders by consistent application of the assumptions of classical structural
theory. In formulating the theory, the ratio of the cylinder's wall thick-
ness to its mean radius is not neglected in comparison to unity and cognizance
is taken of the actual surfaces on which loads are applied. The resulting
set of equations are reduced, by consistently neglecting certain powers of
the thickness to mean radius ratio as compared to unity, to other governing
sets of equations. Three such reductions ave considered, the final one
being an extended form of the commonly used thin-shell theory.

Introduction

Different theoretical formulations of the boundary value problems of
structural elements are available in the literature. These may be either
mathematically rigorous or approximate depending upon whether they are
expressed in terms of the mathematical theory of elasticity or on simpli—
fying engineering assumptions. The approximate formulations are usually for
a special class of structural elements such as shells, plates, and beams
each of which is characterized by the fact that it contains certain relatively
small dimensional parameters.

The present paper will be concerned with dnalysis of hollow circular
cylinders made of homogeneous, igotropic time independent elastic materials
and subject to axisymmetric loadings. Even though many formulations for
this structural element exist, because each is based on a different set of
simplifying assumptions, it had become necessary to understand each set of
assumptions and evaluate the consistency of each theory before considering
its application in a rocket motor assembly investigation in which the shell

plays an important role. The foregoing eventually led to the formulation



of a consistent theory based on the use of classical structural theory
assumptions. Other formulations, including an extended form of thin-shell
theory, are arrived at as reductions of this theory.

It may be broadly considered that two methods have been used in an
attempt to arrive at solutions for shells[l]*. These methods are, of
necessity, approximate in terms of elasticity solutions but they lead to
results that may be considered adequate.

The first is a mathematical method in which the stresses and displace-
ments are expressed in terms of series containing essentially small dimensional
parameters. The applicable equations, and thus its basis, are traceable from
the mathematical theory of elasticity. Different solutions can be obtained,
depending upon the terms of each series that are retained. When more than
certain leading series terms are retained, the adjectives 'higher order' are
generally associated with the theory.

The second is a physical method in which simplifying assumptions are
added to the equations of elasticity. The resulting formulation has been
called structural theory. In the case of straight beams and flat plates, fhe
assumptions of structural theory are known to lead to quite accurate predic-
tions of elastic behavior. These assumptions, herein designated as classical
structural assumptions, may be stated as follows: for the stress (a) the
normal stress in a direction of small dimension is small compared to the
normal stresses in the direction of the other dimensions and may therefore
be neglected in the stress-strain relations; for the displacements plane
sections initially normal to the middle surface in the undeformed state

remain (b) plane (c¢) normal and (d) unextended in the deformed state. The

% Superscript numbers in brackets [ ] designate references at the end of
the paper. .



previous assumptions are also made when curvature is present, However,
additional assumptions have been made as well. The foregoing displacement
assumptions are associated with the names of Euler-Bernoulli for straight
beams, with Winkler for curved beams, with Kirchhoff[QJ for plates, and with
Love-Kirchoff for shells.

A relationship between the mathematical and physical methods may be
established if the appropriate number of terms of the first method is chosen
to correspond to the form of the second method. Conceivably this approach
may even lead from shell theory to membrane theory (in which bending is
neglected). Perhaps one may even be able to account for physical effects
neglected in structural theories, such as transverse shear and extensional
deformations, by the use of additional terms in the mathematical theory.
Whereas the concept being advanced seems to fit together neatly, problems
can arise because of the convergence of all series representations have not
been established. 1In fact, it is disturbing to note that some series have
been shown to diverge[3’u]. The addition of terms to such a series will not
necessarily lead to better results unless it can be shown to do so by
physical justification.

The preceding ideas will be specifically linked herein with develop-
ments in the theories of axisymmetric cylinders. First, a literature survey
is made of existing theories which may be considered to be a simplification
of the theory of elasticity as it applies to hollow, torsionless, axisymmetric
cylinder problems. The survey initially considers theories based on structural
and additional assumptions and then considers the abandonment of one or more
of the structural assumptions that lead to higher order theories.

Then a derivation of a generalized shell theory for the axisymmetric
cylinder problem is presented based upon the classical assumptions of struc-

tural theory. It is different than the usual formulation because of its



consideration of the following two items: First, the ratio of cylinder

wall thickness to mean radius is not neglected as compared to unity.
Second,- in considering boundary conditions and body forces for the formulating
of shell theory, cognizance is taken of the actual surfaces upon which each
load acts. Elements of both these items have been considered previously.

To the best of the authors' knowledge, however, the use of both items in a
consistent fashion has not been done. They will be considered in the pre-
sent paper.

Equations for the solution of torsionless axially symmetric problems
will be derived from the theory of elasticity by introducing the assumptions
of classical structure theory. Equilibrium equations in terms of middle
surface displacements may then be obtained by the usual introduction of
stress resultants and middle surface displacements. The resulting set of
equations are said to describe behavior within what is called a generalized
shell theory. A procedure is summarized for determining the unknown middle
. surface displacements of generalized shell theory.

The equations of generalized shell theory are consistently reduced by
neglecting certain powers of the wall thickness to mean radius ratio when
compared to unity. In the course of such reductions shell theories are
obtained which may be more accurate for thick cylinders than theories for thin
shells. Continued reduction of the equations represent a unique way of
obtaining the equations associated with a more complete version of commonly
used thin-shell theory.

Literature Survey of Existing Theories

The formulation of theories for the approximate solution for axisymmetric
cylinder problems may be listed in the order of increasing complexity, as:

thin-shell theory, Flugge theory, shear deformation theories, Reissner-Naghdi



theory and then other more general higher order shell theories. The first
two theories fall within the category of classical structure theory. Shear
deformation and Reissner-Naghdi theories and the more general higher order
theories can be viewed as attempﬁSto extend the range of structural theory
to account for effects neglected in classical structural theory.

The general developments of structural theory can be traced in a text-

[s]

book type of reference such as Timoshenko ~-. Detailed bibliographies and

categorization of general developments in shell theory are given in recent
(1] L6l and Nash[7].

[11]

works of Novozhilov » Naghdi Bibliographies of cylindrical

el

shell development are given in Novozhilov and Flugge . Recent reviews

of the theoretical and practical solution of the general cylindrical shell

[9] [10]

problem are given in Holand and Simmonds . The axisymmetric situation
is a reduction of the general cylindrical shell problem and is frequently
encountered in practice. Nevertheless, reviews of theoretical developments
do not seem to be restricted to this important case.

Thin~shell theory is based upon the classical structural theory
assumptions delineated in the Introduction, as (a), (b), (¢) and (d). 1In

addition it is assumed in thin=-shell theory that (e) the ratio of the thick-

ness, t, to the mean radius, R, is negligible with respect to unity. Among

the initial contributors to the developments of thin-shell theory are Aron[ll]
and Love[lQ’lBJ. Subsequent developments are traced in Novozhilovl:l:I and
[6]

Naghdi
The formulation of a theory which describes the behavior of a thin

cylindrical shell under general loading conditions has been considered by

a number of authors[l”-l7]. The general nonsymmetric eguations of both

[14] [15]

Donnell and Timoshenko reduce to forms often used to solve axisymmetric

cylinder problems. Their names are, therefore, usually associated with the



axisymmetric theory. Axisymmetric theory, in the absence of axial loads,

appears in Timoshenko and Woinowsky—KriegerElS]. It has also been described
in Heteny%lg] by way of an analogy with the behavior of a beam on an elastic
foundation.

Flugge's theory for cylinder problems is alsc based upon classical
structural assumptions. In addition, the theory assumes that certain but
not ail t/R and (t/R)2 terms are negligible in comparison to unity. The
specific assumptions and their inconsistencies will be noted later in the
course of the development of the generalized shell theory, based only on

classical assumptions.

An attempt to abandon the thin-shell assumption (e) was made by L1,1r»'e[19’20:l

[12]

and Byrne who advanced a shell theory written in terms of a coordinate

system imbedded in the surface of the shell. The more general version of their

theory as it applies to asymmetric loadings was considered by Flﬁgge[SJ and

[22]

by Biezeno and Grammel . A summary of the latter work was given by Biezeno

and Koch . An approximation to this general cylinder theory was considered

[24]

by Morley . The reduction of this formulation to the axisymmetric case

257

appears in the work of Klosner and Kempner[ .

In the following theories one or more of the classical structural
assumptions are abandoned. These theories, therefore, can nc longer be
considered structural theories.

When the assumption that sections normal to the middle surface vemain
normal to the deformed middle surface, designated as assumption (c), is

abandoned shear deformation effects may be considered. The inclusion of

shear deformation has been done for beams by Timoshenko[26_28] for plates,

[29-31]

by Reissner and likewise may be considered for shells. Hildebrand,

[32] [33]

Reissner and Thomas as well as Green and Zerna modified shell theory



to include this effect in their formulation of a general shell theory.

[3u]

Cooper included shear deformation in a formulation for cylindrical

shells. In the axisymmetric case, shear deformation is given as an addi-

[25,35]

tion to thin-shell theory by Klosner who extended Flugge's shell

theory. The modified concepts were designated as Timoshenko-type and
Flugge-type shear deformation theories, respectiwvely.

In a further attempt to extend shell theory, not only is the assumption
concerned with the normality of a cross section neglected, but in addition
the assumptions that the normal éédial‘stress is negligibly small and that

normals to the middle surface are unextendable, designated as assumptions

361 £371]

(a) and (d) respectively, are also abandoned. Reissner[ and Naghdi

included such considerations in the development of their general shell

theory. A generalized form of this theory for orthotropic cylinders is

[38,39]

given by Crouzet-Pascal and Pifko The Reissner-Naghdi theory, adapted

to the axisymmetric cylindrical shell problems with t/R and (t/R)2 terms
[35]

retained in comparison to unity appears in the work of Klosner and Levine .

General investigations which include higher order terms have been made

[u0] [41]

considered the series

[u2]

by a number of authors. Cauchy and Poisson

expansion, in terms of the thickness parameter, for plates. Basset

initially counsidered the series expansion for shells. Other series expan-

[43-u7] [4,48-58]

sions have been considered for plates and shells The most

(58]

recent work is that of Hu who categorizes and discusses the forms of

series. The general cylinder problem has been considered by Rei:sslzsg’go:|

as well as by Bazarenko and VorovitchESl]; the axisymmetric problem has been

considered by Johnson and Reissner[u], Reiss[62] and Prokopov[63].

Other approximate theories have been formulated in an attempt to make

more adequate predictions as to the behavior of thick-walled cylinders.



[eu] [65]

MacGregor and Coffin as well as Bijlaard and Dohrmann have approached
such theories from the viewpoint of an extension to the theory of a beam on
an elastic foundation. The former authors used a semi-empirical approach
while the latter authors' development applied to axisymmet?ically loaded

[66]

" shells of revolution. Lee considered series solutions for stresses
based upon the Lamé solution in which no axial variation of load exists.

Elasticity Formulation

The small displacement, time and temperature independent elasticity
equations for -an axisymmetric homogeneous isotropic circular cylinder with
static external loading and body forces will be derived for the circular
cylinder shown in Figure 1, whose coordinates in the radial, circumferential
and axial directions are z, 0, and x, respectively. The coordinate z is

considered to be positive when measured radially outward from the middle

surface. The strain-displacement equations may be written [12]
sz W auz 1 sz Buz
€22 © 3z ’ €yy T Rrz 0 Sxx T 3w P Fax ='§( 3% | Bz ) (1a-1d)

where Ezz’ E 4, €, ezx are the radial, circumferential, axial and shear

yy© o o xx
strain components respectively; W, and u, are the radial and axial displace-
ments respectively. The stress-strain relations are[78]
0, H( Ox gy ) Ty Y (o *0,.)
= . = o
€, = +AT gyy T + o7 (2a,2b)
o _-u(o_+0__)
_ %X yy zz . -1 tu
€ = = AT 5 e = T (2¢,2d)

where ¢, 0, 0, T are the four stress components which do not vanish
zz’ Tyy’ Txx zZX
identically, namely the radial, circumferential, axial and shear stress

components respectively and E and U are, respectively, the modulus of elasti-

city and Poisson's ratio of the material. The quantity a is the coefficient



of thermal expansion and T the temperature distribution which is a function

of both z and x. The stress components satisfy the equilibrium relations[lQJ
g, 2Tax Oyy %2z 9« %  Tax
o + % " R T 2 +Z =0 3z + TR +R+Z+X:0 (3a,3b)

where X and Z are prescribed body forces per unit volume (these may include
inertia forces). The use of Equations (1) through (3) with appropriate stress
and/or displacement boundary conditions constitute formulation of the problem
for the ten unknown stress, strain and displacement functions of x and z.
Different procedures, each dependent upon the nature of the boundary condi-
tions, may be followed to arrive at solutions for the unknowns. For displace-
ment boundary conditions it is desirable to substitute the strain-displacement
relations of Equations (1) into the stress-strain relations of Equations(2) to get
the stress-displacement relations. These may then be substituted into the
equilibrium requirement of Equation (3) to obtain equilibrium equations in
terms of the displacements. This approach, generally attributed to Navier,

[67]. A

is sometimes referred to as the second boundary value problem
similar approach will be used in the structural theory procedure that follows

to arrive at the shell theory problem formulation..

Stress Assumption and Definitions of Force Resultants

The stress assumption of structural theory as applied to the cylinder
problem under consideration is that O, << Oxx and Oyy and may therefore be
neglected in the stress~strain relations of Equations (2a)-(2c). Rather than
deal directly with the remaining unknown stresses ¢, 0, T_ ., stress

: xx’ Tyy zxX
resultants are defined. The resultants are forces or moments defined per

unit length of middle surface. The normal force resultants in the x and 6

directions, called Nx and Ny’ are prescribed by the definitions
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t/2 2 t/2
N = f UXX(l + -R—) dz 3 N =.[ o dz (4a,ub)
—t 2 tr2 7Y
The shear force resultant, Q> is defined
t/2 ” ‘
Q = —f sz(l + §) dz (5a)
dt/2
The bending moment resultants MX and My are defined

t/2 2 t/2

M =-|] o (1 +%)zdz ; M = - o zdz (Ba,6b)
XX R .t/z Yy

-t/2

The positive directions of the foregoing force and moment resultants per
unit length are indicated in Figure 2.

When a circular cylinder is viewed from the structural theory or shell
theory point of view, a problem of reduced dimension results. In addition
to the foregoing stress resultants, other forces on the cylinder should be
considered in terms of resultants that act on the middle surface. These
resultants are the effect of other forces that act at different radii through
the wall thickness. Even though the middle surface is used as a reference
for force and moment resultants, it is possible to verify that the formula-
tion and solution of a problem is independent of the particular surface
chosen; so that any other surface could have been chosen as the reference
surface.

In view of the assumption that S is negligible, it is expected that
Equation (3a), which expresses equilibrium in the z direction, is not applicable.
Body forces that act at different radii.through the wall thickness and loads
which act at the inner and/or outer surfaces of the cylinder must be considered
in terms of their effect on the middle surface when the equilibrium of a

shell element is considered.
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Boundary conditions which specify the displacements on the inner and/or
outer surfaces of a shell can also be treated in the foregoing formulation--
but only in an artificial way. Fictitious loads are assumed to exist on the
middle surface of the cylinder.Their magnitude and distribution are determined
.so that the associated displacements satisfy prescribed boundary condi-
tions. The fictitious forces as well as actual body forces are incorporated
into the equilibrium equations of the middle surface element.

The surface forces and body forces should be defined as resultants per
unit length of the middle surfaée in the same sense that the other stress
resultants were defined. If the surface stresses are Gzz and sz’ the radial,
axial and moment load resultants per unit area of a middle surface element
are denoted by P> P, and m respectively and expressed

x t/2 t/2 £/2

p.=lo (L+2] 3 p =0Tt (3] 3 m=I1t_ 1+ 2)z] (7a-7c)
r z2Z R /2 X zZX R Zt/9 Zx R Zt/2

The upper limit is introduced for z and the stress components when stresses
act on the outer surface of the cylinder, whereas fhe lower 1limit for z and
the stress components introduced when stresses act on the internal sur-
face of the cylinder. Similarly if the radial, axial and moment body force
resultants are denoted by Br’ BX and M these may be given by:

t/2 t/2 t/2
B_ = [ 72(1+ ) dz ; B_ = J X(1+ £) dz 5 M = [ X(1+ 2) zdz (8a-8c)

r J¢po R ¥ Lgpp R t/2 R

The positive directions associated with the resultants of Equations (7) and

(8) are indicated in Figure 2. These definitions constitute a reduction of

[32]

the equations presented in Hildebrand, Reissner and Thomas A more

recent general presentation in tensor notation in which the terminology used

[61

herein is used can be found in Section 5.1 of Naghdi
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Equilibrium Considerations

Variation in the axial direction of the stress, load and body force
resultants over a differential element of the middle surface is shown in

Figure 2. Equilibrium of forces in the z and x directions requires that

N

_y - - . =
= + QX,X (pr + Br) 0 Nx,x + (pX + BX) 0 (9a,9b)

where the notation sy denotes differentiation with respect to the x coordinate.
Equilibrium of moments about an axis in the 6 direction requires

M -Q - (m+M) =0 (9¢c)
X,X X

The foregoing shows that the shear force resultant, Qx, is dependent upon the
other terms in accordance with the relation

Q, = Mx,x - (m + M) (10)

Substitution of Equation (10) into (9b) indicates that

N

M + L - (m+M), -(p +B)=0 (11)
X, XX R X r r

Equations (9a) and (11) constitute the equilibrium equations for a
cylinder. Derivation of these equations has been referred to as the direct
method[u]. They may also be derived by direct integration of the elasticity
equilibrium relations of Equation (3). This method was considered by Herrmann

[68] and Hu[58]. Still other methods exist for the determination

and Mirsky
of these equations, but they will not be described in this paper.

Displacement Assumptions, Middle Surface Displacements and Constitutive Equations

The displacement assumptions of classical structural theory have been
enumerated in the Introduction and prefixed with the letters (b), (c) and (d).
From the inextensibility assumption (d) it is concluded that the radial dis-

placement w, at a distance z from the middle surface can be expressed in terms
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of the middle surface radial displacement w, as
W= W (12)
From assumptions (b) and (c), that the deformed state remains plane and
normal to the middle surface, the axial displacement u, of an element a
distance z from the middle surface can be expressed in terms of the radial
displacement w and the axial displacement u of the middle surface, namely
u, T U - ZW, (13)

Substitution of Equations (12) and (13) into the strain displacement rela-

tions of Equations (1) leads to the conclusion that

W
= : = et = - . = 14
€., =0 5 eyy Roa b Gy T Wy T BWa 3 E_o 0 (lua-1ud)

From the stress-strain relation of Equations (2) and the stress assumption
that Ozz may be neglected in comparison to the other normal stresses, the

axial and clrcumferential stresses can be written

E E
= —— [e__+ue_ -(1+p)aTl]l ; o = — [&
- XX H yy H y

%x = T-1 vy 10 #e, - (Lot ] (15a,15b)

y

respectively. The stress-strain equations which involve components in the
z direction, namely Equations (2a) and (2d), are obviously violated. This
is an expected consequence of the additional structural theory assumptions
that have been made for Gzz and W

Substitution of the relation between strain and displacement of the
middle surface, namely Equations (14b) and (1lic), into the stress-strain
relation of Equations (15) gives the relation between stress and the dis-

placement of the middle surface, namely

_ E _ Hw
OXX = l—'_-u—z' [U.,x ZW,XX + Riz (1+W)aT] (16a)
o = 2 [ + Hu, - uzw - (1+u)ar] (16b)
yy  1-U2 "Rtz ’x ’xx
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Substitution of these equations into the stress resultant-stress component
definitions of Equations (4) and (6) shows after integration, the relations

between the stress resultant and the displacement of the middle surface,

namely
[N, + M_./R]
_ D W T T
Nx = TR2 [u,x + My ka,XX] — I (17a)
D W NT
Ny = RZ [Llu,x + (1l+k+c) —R'] - —i—:‘l—,l. (17b)
u, [M_+S../R]
_ X T T
MX = D[w,XX R 1+ Ry (17¢)
c, W MT
My = D[UW,XX + (1+ EJ ﬁ?J My (17d)
where, D is called the flexural rigidity of the shell and is defined
. EtS
D = 12017 (18a)
The term k is a small nondimensional parameter defined
£2
k = —l—Q—R—z' (18]3)
and ¢ is an even smaller nondimensional parameter defined
2 Rt =
c == 1n ( - (1+ %) (19)
t r L
2
The quantities NT, MT’ and ST are defined by
t/2 t/2 t/2
Np = Ea| Tdz ; M, = Eoc{ Tzdz 3 S = Eoc[ Tz%dz (20a-20c)
-t/2 -t/2 -t/2
The shear force resultant may also be expressed in terms of the middle
surface displacement by the substitution of Equation (17c) into Equation
(10b). It is then seen that
u, M, + S_/R]
_ XX T T
Q, = Dlw,__. Rt i (m + M) (21)
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The parameter c is of particular interest. A Taylor series expansion

of the natural logarithm term in Equation (19) shows[69] that, for %ﬁ <1,
t
Rt =
2y - oopt . Ly 4 Lo Lys, L Ly
in (R_E)—2[2R+3(2R) t Tt Gt e (22a)

2

When the non-dimensional parameter k, defined in Equation (18b) is introduced,

the series can be rewritten

t
R+ —
1n ( 2)=3(1+k+94<2+37—k3+...) (22b)
R T R 5 7
2

Substitution of Equation (22b) into Equation (20) indicates that

2 3
o= (Bo? L eK)d

5 57 v (23)

For a solid cylinder the quantity k approaches 1/3 and c approaches the
divergent series 1/5 + 1/7

In the general (nonsymmetric) cylinder problem studied by Flﬂgge[BJ,
integrations to find the resultants Ny and My’ as well as other resultants
that do not appear in the axisymmetric case, are performed by considering an
expansion such as that given in Equations (22). In the analysis, terms past
the first two are considered negligible--i.e. terms such as k? are neglected
in comparison to k and unity. Yet, when the equilibrium equations for the
asymmetric case were written in terms of displacement, terms such as k? were
retained in the same coefficient with terms such as k and unity. This fact
may be somewhat obscured in the original work of Flugge where each equilibrium
equation contains more than one displacement component. This situation may

70]

be viewed more easily in the work of Kempner[ who was able to rewrite
the equilibrium equations in such a way that the displacements are uncoupled.
It is worth noting the inconsistency in the retention of higher orders of k

even though the point may be academic and in reality would not affect numerical

solutions to practical shell problems.
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In the present derivation the expression for ¢ given by Equation (19)
will be initially considered. Any subsequent simplification containing the
ratio t/R or powers of t/R as compared to unity will be approached consistently
in all expressions.

Procedure for Obtaining Solutions

Substitution of Equations (17) into Equations (9a) and (11) leads to

two coupled ordinary differential equations

N +M /R y
2 .3 o Tox T,x Rk
R%u,  *tHRw, -kR w,xxX+[px+Bx ( =Ty )] 5= =0 (2ua)
u u M., . +(S -N, )/R
l+k+c ’ XXX ’x [ T,xx ""T,xx T '] .
W xxx L kR4 Jw R t®s T T - [(m+M),x+(Pr+Br)] = 0
D

(24b)

which express equilibrium in terms of displacements. Rather than attempt to
solve them directly, an alternate procedure will be suggested.

The solution for the axial force resultant N_ from Equation (9b), a
linear ordinary differential equation of the first order, requires only
one boundary condition and is, therefore, easily obtained. When Equation
(17a) is rearranged, the derivative of the middle surface axial displacement
u can be expressed in terms of the known value of Nx’ and functions of the
radial displacement w, namely

N_+M_ /R
u, = = - Ux + kRw, (25)

Substitution of Equation (25) into Equation (2ub) leads to

N
2y 1-p?+kte - 1 o _ox
w9xxxx+(l—k)R2 w’xx+[ kR“(l—k)]w_ D(l—k)Lpr+Bg(m+M)’x PRt kRNx,xx

] (26)
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a single fourth order ordinary differential equation for w with the non-
homogeneous term containing the applied loads, the body forces and Nx'
Equation (26) is the basic equation that must be solved in-order to obtain
the complete solution of the axisymmetric cylinder problem. The differential
equation is similar to that of classical thin shell theory. Its solution is
straightforward and requires four boundary conditions.

Once the middle surface radial displacement has been determined, the
middle surface axial displacement can be evaluated from Equation (25). Only
one additional boundary condition is required. The heretofore unknown force
and moment resultants, expressed in terms of the middle surface displacements
by Equations (17b), (17c), (17d) and (21), can then also be determined.

In the present paper it is of interest to obtain expressions for the
stresses and/or strains and displacements so that they may be compared with
those obtained from the classical theory of elasticity. To this end the
circumferential and axial stresses and strains, as'well as the radial and
axial displacements of each element of the cross-section, have been expressed
in terms of the middle surface displacements by Equations (16), (1lub), (luc),
(12) and (13) respectively. The radial and shear stresses may be evaluated
from Equations (3) with the accompaniment of a single boundary condition.
Ordinarily, these stresses are specified on both the inner and outer surfaces
of the cylinder. Hence there appears to be an overspecification of these
stresses in the present formulation. An additional assumption would be
required to solve for these stresses explicitly. Since such an assumption
could be beyond that normally made in structural theory, and it is the authors'
intent to confine the current paper to the assumptions of structural theory,
no attempt will be made to specify how to evaluate either the radial or the

shear stress.
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The strains %2 and €, have been shown to vanish by Equations (1lha) and
(14d). To check the consistency of the assumptions that lead to this result,
one could check the stress-strain relations of Equations (2a) and (2d). A
check of some of the other assumptions can be made through the stress-stain
relations of Equations (2b) and (2c). 1In either case it is apparent that the
check cannot be made unless all stress components have been evaluated.

For easy reference, the equations derived in the present section for the
solution of circular cylinder problems have been repeated in the first column
of Table 1. This theory, based on the assumptions of classical structural
theory is designated - Generalized Shell Theory.

Reduction of Equations for Different t/R Ratios

Since the wall thickness to mean radius ratio may be particularly small
in comparison to unity certain additional simplifying assumptions or reduction
of terms may be made in the derivation of approximate relations. A decision
has to be made ag the limit of the ratio R/t for which an approximation may
be made to still provide acceptable computed solutions. It is observed in
the derived equations that a form of the ratio R/t appears with unity in the
terms t/2R, k and c¢c. These terms are numerically equal to 0.1 and hence would
introduce 10% variation from unity should t/2R,k and ¢ be neglected in comparison
to unity when R/t is greater than 5, .913, and .667 respectively. However,
the mere maintenance of a fixed variation in the computation of each term
does not necessarily reflect itself in an equivalent accuracy in the computed
solution of the complete problem. In seeking an acceptable limit for thin

[1] suggested that R/t > 5 be used, even though he

shell theory, Novozhilov
was considering an "accuracy"” of 5%, while Kraus[7l]suggested an R/t of 10.

Neither suggestion is traceable from theory as developed up to this point.
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In the present paper three particular reductions are to be considered.
When a quantity such as.l + (t/R)" appears with n > 2, the first reduction
states that the C%)n term with n > 2 is negligible with respect to unity.
Equations associated with this additional assumption are said to belong to
a "very thick theory." The quantity c¢ defined by Equation (23) is then
negligible with respect to unity. As a consequence, simplifications occur
in the expressions for the circumferential force and moment resultants and

for the radial displacement, so that they may be written

D W NT
Ny ooy 3 [Uu,x + (1+k) §J = (27)
9ky w MT
My=D[UW,XX+(l+*—5->—R-2]+E—_—ﬂ (28)
N
2 1-p?+k 1 X
w;'XXX):.(l—k)’Rz W’XX+[kR“(l—k)J w e D(1-k) [Pr+Br+(m+M)’x H R +kRNx,xx
N M
T kR H T 1-k T,xx
TR * 1-u NT,xx 1-u R MT,xx(l~u) * (1-u)R ] (29)
instead of Equations (17b), (17d) and (26) respectively.
. t
The second reduction occurs when a quantity such as 1 + (E)n appears

with n > 2, for then the term (%Jn with n > 2 is taken to be negligible
with respect to unity. The associated equations are said to belong to

thick wall theory. The quantities c and k defined by Equations (19) and
(23) are then negligible with respect to unity with resulting simplifica-
tions in the expressions for the circumferential force and moment resultants
and for the radial displacement, namely

D W 30
Ny kRZ Cu °x R] 1-u (30)

W
My a Dluw, Lt =] + —— (31)
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2 N

2u 1-p2 1 o x
Woyxxx' RZ o KR® W T 5{pr+Br+(m+M)’x R * kRNx,xx
N
T kR o Mro Mpogy -Soxx
+ - 2 (32)

=TI NT,xx' 1-u R -1 (=R ]

It is of importance to note that Equations (7) and (8) for the load and
body force resultants remain unchanged in the reductions to very thick theory
and thick theory. That which has been called very thick theory is basically

the Fligge Theory as used by other authorsl2>»3%:72]

except for a difference
in Equation (7a). The term t/R was neglected in comparison to unity in pre-
vious work but is not neglected in the current presentation for reasons of
consistency. It is also noteworthy that the stress distributions computed
from both theories are not linear through the wall thickness.

The third and final reduction to be considered is that associated with
the neglect of %vwith respect to unity, resulting in what is called thin-
shell theory. This theory was reviewed in the section on Literature Survey.
The simplified equations of thin shell theory may be derived from the equa-

tions thus far presented in two different ways. The first is to drop the

X and z

terms 2R R

terms compared to unity in Equations (&a), (5), (Ba), (7),
(8) and (1ub) before proceeding to the derivation of the stress-middle surface
displacement equations. This procedure can be seen in Timoshenko and

Woinowsky--]:(rieger*[15:l

in the absence of axial forces and will not be repeated.
A second approach for obtaining the equations of thin shell theory is to
reduce all expressions of thick wall theory. The direct reduction of the
differential equation for the radial displacement is not evident; a reduction
of its solution, however, will be more fruitful. To this end, let Equations

(29) and (32) be rewritten as

+ Tw, +Ow = V¥ (33)
XX

W wxxx
where ¥ is a function of x. For thick wall theory the terms I', @ and ¥ of

Equation (33) are
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I’:ﬂl_ . @—l-uz

t- RZ g t T T kR% (34a,3ub)
N N M., -M -S
b4 T kR H T T,xx T,xx
= + — 4 = - 34
¥y - pr+Br+(m+M)’x R kRNx,xx+ R T 1-u NTaxx 1-u R?  1-u (1-1)R (34c)
t D

where the subscript t has been appended to identify the theory with which

it is associlated. For very thick walled theory

_ 2u . _1-ut+k
L more 3 % T wao (353,35b)
N N M S
X T kR 3 T 1-k,_ T,xx
e LA T - AR SRR T 3
Vo= pr+Br+(m+M)’xL R +kRNx,xx+ R + 1-U NT,xx i-u RZ MT,Xx(l—u)(l—u)R (35¢)
v ' D(1 - k) i

where the subscript v has been appended to identify the theory.
With the foregoing nomenclature, one may write the homogeneous solution

[73]

Wy of the fourth order differential equation

BIX

w, = C elecosBZX + C,e sinB,x + Cge_BIXCOSBZX + qu_BIXsinBZX (36)

h 1

with 81 and Bz defined

B,m /O¥2T ; 8,= /O7T (37a,37b)
2 W 2 "

where again subscripts t and v have to be added to identify the thick walled

theory and the very thick walled theory respectively; C., C

) 9 C3 and Cq are

constants. When Equations (3%a) and (3u4b) are substituted into Equation (36),
and recognitioh is taken of the definition of k as given by Equation (18b),

the coefficients of Equation (37) may be written

I? -u(z) 3/1—u2-ru(%§)

t
- 2R . 3
(Bl)t =1 tR ] 3 (By)y =L tR

172 (38a,38b)

where again the subscript t was appended to identify thick walled theory.

The second term in the numerator of each of the preceding equations may be
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dropped in thin shell theory where t/R is taken to be negligible with respect
to unity. Both expressions are then identical and reduce to the quantity B

commonly used in axisymmmetric thin walled shell theory, where

3(1 - p?) W

B = [ (39)

When (Bl)t and (Bz)t are equal to B, the homogeneous solution of Equation
(33) as given by Equation (36), is identical to the solution of the differen-
tial equation in which I' and hence the term Fw’xx vanishes. Hence vanishing
of the term Pw’xx is apparently equivalent to the neglect of t/R with respect
to terms of the order of unity. '

A reduction in the right hand side of Equation (33) is also possible.
To this end consider the sum of (m + M),x and kRN __. From Equations (70),

H]

(7¢c), (8b), (8c) and (9b)

t/2 t/2
(m+M),. + kRN = [¥Yt 1 + j YX, dx (40)
X X , XX 2 3% S iy X
where the quantity Yy is defined
Z Z
Y = [(1+ Pz - kR + )] (41a)

By introducing Equation (18b), which defines the quantity k, the newly

defined parameter Y may be written

_ z t t
Yy=z2ll+g- (G gk ] (41b)
Within thin shell theory in which-% is negligible with respect to unity and
lzl f_%‘, the parameter Y reduces to the radial coordinate z. Furthermore,

within thin shell theory, Equations (7c) and (8c) for the bending moment

per unit length and the body moment per unit length reduce to

t/2
m = [z7 ]t/2 : M = zXdz. (42a,42b)
zZx"-t/2 ? .y
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Hence when Y equal to z is inserted in the right hand side of Equation (40)

it may be written m, + M, , so that obviously kRN is a negligible term.
X X X, XX

b

Further reduction in the right hand side of Equation (33) is possible in the

temperature dependent terms. For this consider the following two sums of
terms taken from Equation (34c)
t/2

i} Wz
-t/2

t/2
§§ﬁ NT %x MT,XX - ST,XX‘ - EoR [ (k - z zz) T
i 1-u (1-W)R  1-p R~ R? “°x

. 921 (43b)

-t/2

The expressions on the right in Equations (43) are arrived at based on the
definitions given in Equations (20). It is possible to show that the second
term and first and third term, in the parentheses on the right of the first
and second equation respectively, are negligible for thin shell theory.

Thus the final form of Equation (33) for the radial displacement may
be given for thin shell theory as

Nx N

Pr+Br+(m+M)’x bt R T

b R 1-u
W s + YB'w = 5 (uu)

where B is defined by Equation (39). In the absence of bedy forces, axial
load and temperature effeets, this equation is analogous tc the expression
for the displacement of a beam on an elastic foundationEls]. A similar equa-
tion is commonly used in the analysis of thin cylindrical shells in the
absence of body forces and temperature (i.e., Br =0, M=0and T = 0) but

. [16]
then the term m, does not appear. The term dces appear when Donnell's

general cylinder equations are reduced, but to the best of the authors'

knowledge it has not been previously noted or used for axisymmetric problems.
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To show any additional reductioﬁ in the expressions, it is necessary
to consider the complete solution for the radial displacement. This may
be arrived at by application of the method of variation of'parameters[73]
to find the particular solution to Equation (33) in view of the availability
of Equation (36). Application of this method is straightforward, but
lengthy and tedius[7u]. Only the results are given, namely, that the radial

displacement w may be expressed in the form
w=Fy, +Fy,+Fy, +Fy, (45)

where y,, y,, ¥,> and y, are products of the exponential and trigonometric
functions. Specifically, for thin-shell theory in which B, and B, reduce

to B defined by Equation (39),

Bx Bx

. -Bx -Bx .
y, = e cosBx ; y, =e sinBx ; y, B e B cosBx ; y, = e B sinfx

(46a-u46d)

whereas F,, F

23 Iy and F, are functions of x which may be expressed in terms

of integrals of Y,

1 1

F, = - 567 f(ys ty ¥ 5 F, =gy fﬁ’a -y, )ax (47a,47b)
1 1

Fy = 537 f(y1 - y,)¥dx ; F, = 387 f(y1 + y,)¥dx (47¢,47d)

The radial displacement may then be expressed

WE=w, +tWw (48)
where

W= §%? [-y, fYQde -V, Jy2de ty, [y3?dx +y, fledx] (49a)

1
W, = a7 [-y, Jy3de -y, Jthdx ty, Jy1de ty, fyZde] (49b)
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It is then possible to verify the fact that the second derivative of w with
respect to x

Wy = 2B2 [w, - w,] (50)

These results will be used for further reduction of the thick wall to
thin-shell expressions.

Consideration is next given to a particular sum of w and its second
derivative, namely -(U/R)w + ka,xx. In view of Equations (48) and (50)
it is seen that

M

-k = - & 2 - B oop2
R Wt KRw, L T 28°kRIw + [ R 2B kR]w2 (51)

When the definition of B as given by Equation (39) is introduced to the right

hand side of Equation (51), the bracketed terms may be written

N werres
—%iQBZkR=—%[l+ﬁ“——1‘l——§- (52)
2/3 u

Since the second term on the right side is negligible within thin-shell
theory, as long as U is not especially small, it becomes ~-u/R. Hence in
view of the reduced form of Equation (52) together with Equations (47) and
(50) it is seen that ka,xx is negligible in comparison to -(u/R)w and,
therefore, Equation (25) for the derivative of the middle surface axial dis-
placement becomes RN 4 ﬁz_]

X 1-u W

oy = - D R (53)

The quantity MT does not appear in this expression since it is easily shown

from the definitions of N, and M, given by Equations (20a) and (20b) that

MT/R is negligible with respect to N,, for this shell theory.

T

Similarly Equations (49) and (50) enable us to write

= [3 + 28%ulw, + [y - 2871 (54)
R Wiy + gz ulw,

1
'Rj- w + ]JW,XX
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Use of Equation (39) for the bracketed terms on the right shows the coeffi-

cients of w; and w, expressible in the form

%7 + 2%y :-%§ E% + 2u /3(112) ] (55)

The first term on the right side is negligible for thin-shell theory
again, as long as U is not especially small. Therefore, Equation (31) may
be reduced to read

MT

- e 6
My MDw,  + = (56)

The reduction of Equations (2u4), which express equilibrium in terms
of the middle surface displacements, will now be considered. From the

discussion following Equation (52) it is seen that the term kR 3w, may

XXX
be dropped in Equation (24a). In Equation (24b), the terms k and c¢ in the
coefficient of w may also be dropped, When the term u,XXX/R is evaluated
from Equation (53) and substituted into the reduced form of Equation (2ib)

it may be seen that this term must be negligible to lead to Equation (4u4).

Therefore, the reduced form of Equations (24) for thin-shell theory may

be given
R? N7, x
2 112y B - > -
R7u, .+ HRw, +(1-pu%) T [pX+BX =" =0 (57a)
2,2 2 M -N_/R
BL —(1p2) S Toxx 104

}zRu,X+w T T Wonx (1-p%) T [(m+M),X +pr+Br = 1=0 (57b)
The guantities M and S do not appear in the right hand side of

T,x T,xx

Equation (57a) and (57b) respectively since these are easily shown to be

negligible with respect to N and MT - respectively for thin-shell theory,
9

T,x
based on the definitions of Equations (20). Previous use of the foregoing

[75,76]

form of the thin-shell equations in the presence of axial loads,

have not included the term a) m,. . The particular form of Equations (57)

a)The previous equations were expressed in the absence of the body forces
B, B, and M. :
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(773

has been investigated in the examination of the effect of a band load
on an cylindrical shell filled with an elastic core. In that investiga-
tion the effect of the term m, was not significant.

It was shown in arriving at Equations (57) that the term u’xxx/R can
be dropped from thick shell theory as expressed by Equations (24) because
it is negligible with respect to the surviving terms. In particular,
u,XXX/R may be considered negligible with respect to Wy xx” It then
follows that both u’xxx/R and u,X/R are negligible with respect to Wsex
and w,xx'respectively. As a consequence, the expressions for axial bending
moment and shear resultants MX and Qx’ previously given by Equations (17c¢)
and (21) reduce to
il T

3 Q= Dw,XXX-—(m+M) + = (58a,58b)

M_ = Dw, + gy

T
X XX 1-u

In addition, reductions in Equations (1l4b), (16a), (16b) and (36) for

€ 5 O, , o__ and «v__ are easily observed and may be written as
yy - xXx°yy Xy

W
E =35 (59)
vy R
o = —E—z Lu, -zw +u T _(1tu)aT] (60a)
xx  1-u ’x T xx R
o =y [Z + uu, -Hzw, _-(1+u)aT] (60b)
yy  1-u? "R ’x ’ XX
T + 1 8 -(c + X) (61)
ZX,Z - zZX XX 5 X

Equations (58), (59), (80) and (61) may be used with the basic axially
symmetric thin-walled cylinder relations as expressed either by Equation (57)
or by Equation (4u4).

A summary of the equations of both thick walled and thin-walled cylinder

theory are given in Table 1. The procedure used by previous authors to
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obtain solutions for stresses, strains, displacements and stress resultants
for the Flugge and thin-shell theories has, for the most part, been the
same as the procedure given herein.
Conclusions

Structural theories for torsionless axisymmetric hollow cylinders have
been discussed, Emphasis has been placed on their reduction to commonly
used thin-shell theory. In the course of such a derivation and the reduction,
which is accomplished in a unique way, differences that exist in the theories
derived and those available have been appropriately noted. Three such
differences existed. The first involved a question of consistency in the
Flugge equations, for general cylindrical shells, in which k? terms neglected
at one point in comparison to unity appear in the final Flugge equations.
Since k? is a very small quantity this point is mainly academic. The second
difference arose in the treatment of the load and body force resultants. In
previous work in which Flugge theory was used for an axisymmetric solution
t/R was neglected in comparison to unity in the ra&ial load resultant.
This overlooks the actual surface at which the load is applied. The third
difference involved the presence of the moment load resultant in thin-shell
theory. The effect of these latter two items can be considered in terms
of differences in numerical results by the presence, or lack therof, in the
equations used for solution of several problems. The evaluation of these
results and the results of higher order theories as compared to structural
theory and its reductions should be made, where possible, in light of available

elasticity and/or experimental results.
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Figure- 2. STRESS,LOAD AND BODY FORCE

_SURFACE ELEMENT AND THEIR
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